- The yield of charcoal is higher.
In traditional charcoal making part of the wood is burned to dry out and carbonise the remainder. During carbonisation there is also an exothermic production of heat as the wood structure decomposes to form charcoal and this supplements the heat derived from burning part of the charge. The most efficient of the retort systems described later is capable of giving yields of about one ton of charcoal from about 3.5 tons of wood providing the wood is well dried and the retort operated properly. The best that can be achieved by brick kilns is about one ton from 4.5 tons of well dried wood.
Not all industrial methods however give such high yields and most will not work properly unless the wood is well dried. Traditional methods on the other hand will operate on substantially green wood but with much lower yield.
- Carbonisation is faster.
This is a rather meaningless claim. What one really needs to know about the system are answers to such questions as 'at what rate is charcoal produced per unit of capital invested?' or 'how much charcoal is produced per man year of labour employed?' That is to say at the end of the year how much charcoal do we have for how much investment in plant and working capital?
In the developing world capital is usually scarce and labour power abundant. When it is noted that industrial methods require massive investment, usually in off-shore borrowed funds and skilled labour; industrial methods lose a lot of their glamour and obviously call for careful pre-investment studies to see where they will really lead.
- New raw materials can be carbonised.
This is certainly proved for one industrial system, the multiple hearth rotary furnace. However, it is always necessary to ask if the new material can be 'successfully carbonised'. Many proposals have come to grief when this test has been applied. Nevertheless bark and sawdust and certain agricultural residues can be successfully carbonised now. But it is essential to ask before setting out to carbonise agricultural residues whether from all points of view this is the best use for them and if the resulting charcoal produced in the form of fine powder can be economically turned into briquettes and marketed in the particular developing country.
- Industrial chemicals can be recovered.
Most retort based industrial systems can allow the smoke given off during carbonisation to be captured and condensibles and gas recovered. The main problem in making this a success nowadays is the low price obtainable for these chemicals in relation to the high present day capital cost of setting up a recovery and refining system to process them.
- Industrial methods cause less pollution.
If the smoke from carbonisation is recovered then this source of environmental pollution is largely eliminated. This is a definite benefit where carbonisation is carried out in an urban environment. But industrial methods, especially where the smoke and fumes are captured for by-product recovery can pollute the environment in a more objectionable way. This can occur because inevitably in the process of by-product recovery, liquid effluents accumulate and have to be disposed of. If this is done carelessly then waste liquids toxic to fish and plant life escape into streams and waterways. Control of this pollution is not impossible - it just costs money.
For more information, please view our website or contact us directly.
Homepage/ http://www.charcoalequipment.com
Alibaba website/ http://hntljx.en.alibaba.com/
E-mail/ sarah@cncharcoalmachine.com